(* Beispiel 7.4 *)

ω=2

2

n=4

4

m=5

5

p=a0+a1*x+a2*x^2+a3*x^3

                2       3
a0 + a1 x + a2 x  + a3 x

(* a0=0 a1=1 a2=2 a3=3 *)

(* qlm=x^(2^m)-ω^rev(l/(2^m)) *)

q02=x^4-1 (* =x^2^2-ω^rev(0/4)=x^4-2^rev(00) *)

      4
-1 + x

q01=x^2-1 (* =x^2^1-ω^rev(0/2)=x^2-2^rev(00) *)

      2
-1 + x

q21=x^2-4 (* =x^2^1-ω^rev(2/2)=x^2-2^rev(01) *)

      2
-4 + x

q00=x-1 (* =x^2^0-ω^rev(0/1)=x-2^rev(00) *)

-1 + x

q10=x-4 (* =x^2^0-ω^rev(1/1)=x-2^rev(01) *)

-4 + x

q20=x-2 (* =x^2^0-ω^rev(2/1)=x-2^rev(10) *)

-2 + x

q30=x-3 (* =x^2^0-ω^rev(3/1)=x-2^rev(11) *)

-3 + x

p=a0+a1*x+a2*x^2+a3*x^3

                2       3
a0 + a1 x + a2 x  + a3 x

r01=PolynomialRemainder[p,q01,x]

a0 + a2 + (a1 + a3) x

r21=PolynomialRemainder[p,q21,x]

a0 + 4 a2 + (a1 + 4 a3) x

r00=PolynomialRemainder[r01,q00,x]

a0 + a1 + a2 + a3

r10=PolynomialRemainder[r01,q10,x]

a0 + 4 a1 + a2 + 4 a3

r20=PolynomialRemainder[r21,q20,x]

a0 + 2 a1 + 4 a2 + 8 a3

r30=PolynomialRemainder[r21,q30,x]

a0 + 3 a1 + 4 a2 + 12 a3


Converted by Mathematica  (July 7, 2003)